Progressive Taxation in Romania - An Analysis by Scenarios

Alina Georgeta Ailincă

"Victor Slävescu" Centre for Financial and Monetary Research, Romania alinageorgetaailinca@gmail.com

Abstract

The regional geopolitical tensions, the changes in the regional markets of energy products and food that led to the increase of prices and the stagnation of economic growth at the level of the European Union highlighting the need to review the management of public policies.

Thus, under the pressure of growing public and private debts, under the pressure of budget deficits, the fiscal policies of the EU27 states often have the unpleasant task of making substantial reforms of the taxation systems. Therefore, the article proposes the construction of a series of scenarios regarding the possibility of returning to the progressive taxation of the payroll tax in Romania. The article tries to highlight the advantages and where benefits can intervene for the structure of the national budget starting from the analysis of a series of scenarios regarding the progressive taxation of salaries and proposals are outlined in this regard.

Key words: salary tax, income inequality, personal income tax, progressiveness **J.E.L. classification:** H21, H24, H31

1. Introduction

The recent international developments, interspersed with local wars, rising inflation, declining economic growth increasingly outline the need for a consistent fiscal-budgetary space at the European level, which allows additional expenses to be made when the situation requires it. At the level of Romania, the entry into the excessive deficit procedure in the period close to the COVID-19 pandemic allowed its suspension as well as a momentary relaxation. However, it also led to constant pressure from the European Commission for the gradual realization of fiscal consolidation and the achievement of the deficit target for the next period 2024-2026. Fiscal consolidation involves simplifying taxation and harmonizing it with the business environment, careful control of expenses and increasing tax revenues. Thus, according to the ESA should decrease from 6.2% of GDP in 2022 to 4.4% of GDP in 2023, reaching in 2025-2026 to 2, 9% of GDP. This evolution must also allow the reduction of inflation and the stimulation of healthy economic growth, as well as the protection of the vulnerable categories of the population and the correct placement of employment at wage levels that allow a decent and prosperous life.

In this sense, Romania, through its fiscal-budgetary authorities, must make efforts to restore the budgetary parameters, including through the system of taxes and fees. In addition to the recently announced measures, which can to some extent lead to the improvement of the budget performance, broader measures are also necessary, to frame taxation in the Western European reference system, in the implementation of a more or less progressive tax system (with more or less tranches). In this sense, using the primary data of the National Agency for Fiscal Administration (NAFA) for the year 2022, it has been built a set of scenarios, with three progressive rates. From these we selected a single model, with three rates, the most likely and potential to be implemented and used an Auto-Regressive Moving Average (ARMA) Box-Jenkins methodology, generally used for univariate time series forecasting. The real results can only be in agreement to a certain extent with the econometric simulations, and can indicate possible developments that can assist political decision-makers in order to implement sound fiscal policies.

2. Literature review

A number of important fields can only function properly with the support of the budgetary apparatus such as: infrastructure, defence, public order, education, research, culture, industry, etc. The financing of these fields constantly requires the improvement of the ratio between public revenues and expenditures. Thus, fiscal consolidation should be the preferred way to align demand more with supply, to reduce internal and external vulnerabilities, to avoid placing unnecessary burdens on monetary policy, but also to ensure the implementation of the reforms of the National Recovery Plan and Resilience (PNRR) (European Commission, 2023, SWD(2023) 642 final). Fiscal consolidation should be considered bearing in mind that there are numerous studies (Sargent and Wallace, 1981; Blanchard, 1993; Kawai and Maccini, 1995; Budina, and Van Wijnbergen, 2000, etc.) that talk about the fiscal roots of inflation and investigate the implications the sustainability of the fiscal policy on the stabilization of inflation in the region of Central and Eastern Europe and especially in Romania.

Equally, in the study of Cournède et al. (2014) state that if too little attention is paid to the mix of instruments used to achieve consolidation, it can undermine long-term growth, exacerbate income inequality and slow down the global rebalancing process.

So the control of adverse effects must be taken into account, and fiscal progressivity must be seriously considered for improving fiscal consolidation only after the structural elements of the labour market are regulated. However, in the case of Romania, there are still numerous exemptions, deductions, particular cases, anomalies, which make the existence of the pure single quota only theoretical. In the case of Romania, intervention should first be taken to reduce social contributions and cap them, as well as natural steps to raise the level of the minimum wage in the economy and the average wage, depending on the capacity of the labour market.

But in order to be able to integrate the idea of wage progressivity, the evolution of the phenomenon over time should also be seen. Thus, regarding prediction models, using time series, studies generally use AR(I)MA (Auto-Regressive (Integrated) Moving Average) models (Box, Jenkins and Reinsel, 1994) for a series of raw materials and products, for GDP evolution, but also for fiscal elements, such as deficit and public debt (Bowman & Husain, 2004; Stoian, 2008; Goswami and Hossain, 2013; Cortez et al., 2018; Ericsson, 2017; Abonazel & Abdelftah , 2019; Navapan and Boonyakunakorn, 2017; Zhuravka et al., 2019, etc.).

In specialized studies, despite some progress in the use of ARIMA/ARMA type modelling for a number of important budgetary fiscal indicators, regarding the budget deficit and domestic parameters such as personal income tax and, more specifically, payroll tax, there are still huge possibilities for developing new applications. In this sense, the aim of the paper is to predict the future values of the evolution of the salary tax, using the ARMA model, starting from the analysis of the evolutions of the receipts from this tax, on income tranches.

3. Research methodology

Considering the concerns for the future evolutions of the macroeconomic parameters, regarding the budget deficit, this article aims to develop a suitable model to predict, based on some time series, the evolution of the income from the salary tax in Romania. Thus, the paper uses NAFA monthly data for payroll tax for 2022 and extending the time series for the period 2020m1-2024m1, the forecast being made until 2030m1, based on the Box-Jenkings ARIMA model at the level of a single scenario, considered the most probable. For the year 2024, the payroll tax time series is adjusted according to scenarios of fiscal progressivity with 3 income rates. The income tranches are: t1 - 0-2549 lei; t2 - 2550-8000 lei; t3 - 8001-10000 lei; t4 - 10,001-15,000 lei; t5 - over 15,000 lei, according to NAFAinformation. From these scenarios, the forecast is continued based on the ARMA model in tranches only for a single scenario with three rates (scenario 2), namely with shares of: 10% (for t1 and t2); 18% (for t3) and 23% (for t4 and t5).

According to specialist studies (e.g. D'Amico, 2020) the Box-Jenkins (1970) models contain three stages of elaboration: identification, estimation and diagnosis and prediction. For the identification step, Auto Correlation Function (ACF) and Partial Auto Correlation Function (PACF) correlograms were used in this paper. For non-stationary time series, first-order differencing is used to make the series stationary. If the series is non-stationary an ARIMA model is used, and if it is stationary ARMA.

In our case, the tranche analyses on the initial time series, demonstrate that both the analysis based on correlograms (see appendix) and based on the study of the Augmented Dickey – Fuller (ADF) test, which presents stationarity at the level, the selected model is ARMA type.

Series	Level	Critica	ıl value
	Constant & Trend (t – statistic, and p-value)	5%	1%
SC2T1	-4,913908	-3,487845	-4,121303
SC2T2	-5,962013	-3,487845	-4,121303
SC2T3	-3,757089	-3,510740	-4,170583
SC2T4	-3,636355	-3,508508	-4,165756
SC2T5	-4,604641 0.0030*	-3,508508	-4,165756

Table no. 1 Augmented Dickey - Fuller (ADF) Unit Root Stationary Test result on income brackets for payroll tax

Source: Own research, using annual Eurostat data and Eviews12 software. Notations: SC- Scenario; t-tranche. Numbers with * indicate critical unilateral p values of the ADF test (obtained from MacKinnon, 1996).

In the autoregressive (AR) process, the independent values will be the past values of the dependent variable, and the general form of the autoregressive model will be as follows:

 $y_t = a_0 + a_1 y_{t-1} + \ldots + a_p y_{t-p} + \varepsilon_t$

The above equation is the general representation of the AR (p) model, where a_{0},a_{1} ...ap are the constants and $y_{t-1}...y_{t-p}$ are the past values of the dependent variable. As for the moving average (MA), the general form of the equation is as follows:

 $y_t=a_0+\varepsilon_t+b_1\varepsilon_{t-1}+...+b_q\varepsilon_{t-q}$

In the above equation, a_0 , b_1 , ... b_q are constants and ε_t , ε_{t-1} ... ε_{t-q} , are the past values of the error terms. The combined process of AR and MA process is ARMA. Thus, the equation obtained after combining the above equations is the general representation of the ARMA (p, q) model:

 $y_t = a_0 + a_1 y_{t-1} + \ldots + a_p y_{t-p} + \varepsilon_t + b_1 \varepsilon_{t-1} + \ldots + b_q \varepsilon_{t-q}$

This final equation is valid in our case, dealing with an ARMA model. At the same time, the primary data provided by NAFA for 2022 are presented below, and the series is completed with a minor adjustment for 2023, which we assume as a result of the fiscal measures taken by the government in 2023 to improve fiscal performance.

Table	e no. 2 The evolu	ition of the s	alary tax in	Romania in 2	022 by income t	ranches and	' by calend	dar
mont	hs (million lei)	-	-				-	_

2022 (months)	0-2549	2550-8000	8001-10000	10001-15000	>15000	Total
1	53.29	973.98	192.97	222.17	246.06	1688.47
2	51.8	976.18	194.16	219.68	258.72	1700.54
3	55.04	986.6	202.85	236.37	330.92	1811.78
4	50.5	991.15	206.78	253.07	326.43	1827.93
5	50.87	1011.98	218.45	250.52	292.6	1824.42
6	47.23	962.63	213.51	251.89	300.24	1775.5
7	45.99	966.09	206.03	252.77	293.67	1764.55
8	42.57	974.59	212.9	244.29	285.91	1760.26
9	45.67	951.47	217.43	252.87	305.64	1773.08
10	53.95	977.07	225.21	266.74	302.34	1825.31
11	43.62	968.19	235.1	288.93	341.77	1877.61
12	46.63	933.3	230.9	329.72	458.58	1999.13
Total	587.16	11673.23	2556.29	3069.02	3742.88	21628.58

Source: National Agency for Fiscal Administration (NAFA)

4. Results and discussions

Taking into account the existence of the primary information provided by NAFA, we elaborate on the basis of the history of tranches of the salary tax used by Romania in the past three sets of scenarios with three income rates.

We thus observe in the "Difference" section that models offer some advantage in relation to current performance, and fiscal progressivity, understood even in the sense of a modest progressivity (with only 3 rates) can bring benefits to the state budget. However, we choose the most precarious scenario, scenario 2 with odds of 10%, 18% and 23% in order not to risk unnecessarily. It should be noted that the tax rate is seen in this study as applying only to the tranche in question, and if we take into account the possible separate classification of the income into several tranches (as it should actually be), we should adjust from the global amount annually with approximately 1 billion lei.

2024 (income tranches)	0-2549	2550-8000	8001-10000	10001-15000	>15000		Difference
Scenario 1 (rates)	10%	16%	16%	21%	21%	Total	year
1	54.29	1559.97	310.35	468.66	518.83	2912.09	1218.62
2	52.80	1563.49	312.26	463.43	545.41	2937.38	1231.84
3	56.04	1580.16	326.16	498.48	697.03	3157.87	1341.09
4	51.50	1587.44	332.45	533.55	687.60	3192.54	1359.61
5	51.87	1620.77	351.12	528.19	616.56	3168.51	1339.09
6	48.23	1541.81	343.22	531.07	632.60	3096.93	1316.43
7	46.99	1547.34	331.25	532.92	618.81	3077.31	1307.76
8	43.57	1560.94	342.24	515.11	602.51	3064.37	1299.11
9	46.67	1523.95	349.49	533.13	643.94	3097.18	1319.10
10	54.95	1564.91	361.94	562.25	637.01	3181.07	1350.76
11	44.62	1550.70	377.76	608.85	719.82	3301.75	1419.14
12	47.63	1494.88	371.04	694.51	965.12	3573.18	1569.05
Total	599.16	18696.37	4109.26	6470.14	7885.25	37760.18	16071.60
Seconaria 2							Difference
(retos)	10%	10%	18%	23%	23%	Total	Previous
(rates)							year
1	54.29	974.98	349.15	513.29	568.24	2459.95	766.48
2	52.80	977.18	351.29	507.56	597.36	2486.19	780.65
3	56.04	987.60	366.93	545.95	763.42	2719.94	903.16
4	51.50	992.15	374.00	584.36	753.09	2755.10	922.17
5	51.87	1012.98	395.01	578.50	675.28	2713.64	884.22
6	48.23	963.63	386.12	581.65	692.85	2672.48	891.98
7	46.99	967.09	372.65	583.67	677.74	2648.15	878.60
8	43.57	975.59	385.02	564.17	659.89	2628.24	862.98
9	46.67	952.47	393.17	583.90	705.27	2681.49	903.41
10	54.95	978.07	407.18	615.80	697.68	2753.68	923.37
11	44.62	969.19	424.98	666.84	788.37	2894.00	1011.39
12	47.63	934.30	417.42	760.66	1057.03	3217.04	1212.91
Total	599.16	11685.23	4622.92	7086.35	8636.22	32629.88	10941.30
Scenario 3	100/	100/	1.00/	2.49/	2.40/	T ()	Difference
(rates)	10%	10%	10%	34%0	34%	Total	Previous
1	54.20	074.08	210.25	758 78	840.00	2038 40	1244 03
2	52.80	077.18	310.33	750.21	882.05	2936.40	1244.95
2	56.04	977.18	312.20	807.06	1128 52	2975.00	1499.61
	51.50	987.00	320.10	862.84	1128.55	3353.20	1400.01
5	51.87	1012.08	351.12	855.17	008 24	3260 38	1/30 06
6	48.22	062.62	242.22	850.82	1024 22	3207.58	1459.60
7	46.00	967.00	331.25	862.82	1024.22	3237.12	1430.02
8	43 57	975 59	342.24	833.99	975.49	3170.88	1405.62
Q	46.67	952 47	349.49	863.16	1042 58	3254 36	1403.02
10	54.05	978.07	361.0/	010.32	1031 36	3336.63	14/0.20
10	44.62	969.19	377 76	985 76	1165.42	3542 75	1660.32
12	47.63	934 30	371.04	1124 45	1562 57	4039 99	2035 86
Total	599.16	11685.23	4109.26	10475.47	12766.59	39635.71	17947.13

Table no.3 The evolution of the salary tax in Romania in 2024 according to scenarios with three tranches (million lei)

Sources: author's calculations, initial NAFA data

However, given that in the proposed scenario, scenario 2, the first two tranches retain the current 10% share, to allow raising the minimum income to the average one, and the number of employees on these tranches is considerable, over 4 thousand employees from the 5 .0673 million employees at the level of December 2022 (INS, monthly bulletin no. 6/2023), we can consider the calculations broadly correct.

Thus, after choosing scenario 2 with three tranches we continue the analysis. From the correlograms in the appendix and from the ADF test presented above, it is clear that the analysed time series are stationary and we will use an ARMA type model.

Correlograms for the autocorrelation function (ACF) and partial autocorrelation function (PACF) for all income tranches on the selected model (scenario 2 with three tranches) were presented in the appendix. Correlograms are used to correctly choose p, q, and d values for models and to identify AR and MA process terms. Thus, series of alternative models are built for the estimation process, being rather an art in establishing the most suitable ARMA model.

Thus, in the estimation phase, we must follow the significance of the AR and MA components, which must have a p-value below 0.05. At the same time, we should compare the Akaike, Schwartz and Hannan-Quinn information criteria, preferring the model with the three lowest information values (D'Amico, 2020). From the exposition of these values we can decide the most suitable model, without claiming that it is perfect, but that it is the best possible model to choose for the evolution of the payroll tax, on tranches. Centralized the result for all tranches is presented below. (Table 4).

Table 4. - The result of the ARMA estimations and the selection of the appropriate ARMA model for scenario 2 with three rates

	SC2T1	SC2T2	SC2T3	SC2T4	SC2T5
Models (AR, integration,					
MA)	(1,0,3)	(12,0,7)	(1, 0,0)	(1,0,0)	(1,0,0)
R2	0,350335	0,370129	0,942977	0,932539	0,865906
R2 adjusted	0,315531	0,336386	0,940977	0,930172	0,861201
AR p-value	0,0023	0,0000	0,0000	0,0000	0,0000
MA p-value	0,0047	0,0002	-	-	-
Log-likelihood	-167,7981	-250,0532	-264,7968	-309,0842	-347,5492
Akaike info criterion (AIC)	5,726604	8,468441	8,926561	10,402810	11,684970
Schwarz criterion (SC)	5,866227	8,608064	9,031278	10,507520	11,789690
Hannan-Quinn criterion					
(HQC)	5,781219	8,523056	8,967522	10,443770	11,725930

Source: author's calculations, initial NAFA data.

After choosing the model, in the diagnostic phase we will check if the residuals are white noise, then we will check if the roots are inside or outside the circles, for both MA and AR roots.

The roots of MA indicate whether the process is reversible and the roots of AR indicate that the process is stationary, so for both (AR and MA) they must be inside the circle (see Appendix).

If the roots AR and MA are inside the circle, we can perform the forecasting process. The synthetic forecast results are shown in the figure below (see Figure 1).

Figure no. 1. Forecast results according to scenario 2 with three rates: 10%, 18%, 23% of the progressivity of the salary tax

Source: author's calculations, initial NAFA data.

5. Conclusions

This article aims to develop a forecast model for the evolution of the payroll tax in Romania for the period 2025m1-2030m12. Using the ACF and PACF correlograms, we have identified a series of possible models for each salary income tranche; the placement on certain tranches is in accordance with NAFA data. Thus, three scenarios with 3 rates were developed, of which only one was chosen for the forecast, scenario 2, with the quotas of 10%, 18%, 23%, the most likely to be adopted in case the transition to fiscal progressivity is desired for salaries, even if it apparently brings the smallest benefits to the state budget. According to the Box-Jenkins methodology, for the payroll tax, the following models were selected for forecasting on the five tranches for scenario 2: ARMA(1,0,3); ARMA (12,0,7); ARMA (1,0,0); ARMA (1,0,0); ARMA (1,0,0).

This type of forecasting model can help us understand the possible future evolutions of the salary tax, the personal income tax, including wealth and finally the way of reflection on the budget revenues and the budget deficit.

The article represents a partial capitalization of the study "Progressive taxation – theoretical and empirical analyses at the level of EU27 member countries" (coord. Ailincă, A.G.), of the 2023 annual research program of Centre for Financial and Monetary Research "Victor Slăvescu". At the same time, regarding the limits, the study presents an analysis on a limited time series, and only on a specific component: the salary tax. Thus, the study can be completed by extension, to be able to understand how it manifests itself on the budget deficit.

6. References

- Abonazel, M. R., & Abd-elftah, A. I., 2019. Forecasting Egyptian GDP using ARIMA models. *Reports on Economics and Finance*, 5(1), 35–47.
- Blanchard, O., 1993. "Suggestions for a New Set of Fiscal Indicators" in *The Political Economy of Government Debt*, edd. H. Verbon and F. van Winden, North Holland.
- Bowman, C., & Husain, A. M., 2004. Forecasting commodity prices: Futures Versus Judgment (WP/04/41).

- Box, G., Jenkins, G. M., & Reinsel, G., 1994. *Time Series Analysis: Forecasting & Control* (3rd ed.), Prentice Hall.
- Budina, Nina & Van Wijnbergen, Sweder, 2000. Fiscal deficits, monetary reform, and inflation stabilization in Romania. *Policy Research Working Paper Series 2298*, The World Bank.
- Cournède, Boris, Antoine Goujard and Álvaro Pina, 2014. Reconciling fiscal consolidation with growth and equity. OECD Journal: Economic Studies, Vol. 2013/1. https://dx.doi.org/10.1787/eco_studies-2013-5jzb44vzbkhd
- Cortez, C. A. T., Saydam, S., Coulton, J., & Sammut, C., 2018. Alternative techniques for forecasting mineral commodity prices. *International Journal of Mining Science and Technology*, 28(2), 309–322. <u>https://doi.org/10.1016/j.ijmst.2017.09.001</u>.
- D'Amico, J., 2020. ARIMA models and Bax-Jenkins model selection Eviews. Online at: <u>https://www.youtube.com/watch?v=ukGJ0sLgbqI</u>.
- European Commission, Commission Staff Working Document In-depth review for Romania, SWD(2023) 642 final, 24.5.2023 Online: <u>https://economy-finance.ec.europa.eu/system/files/202305/RO_SWD_2023_642_15</u> EN autre document travail service part1 v1.pdf.
- Ericsson, N. R., 2017. How biased are U.S. government forecasts of the federal debt? *International Journal of Forecasting*, 33(2), 543-559. <u>https://doi.org/10.1016/j.ijforecast.2016.09.001</u>.
- Fedir Zhuravka, Hanna Filatova and John O. Aiyedogbon, 2019. Government debt forecasting based on the Arima model. *Public and Municipal Finance*, 8(1), 120-127. https://doi.org/10.21511/pmf.08(1).2019.11
- Goswami, G. G., & Hossain, M. M., 2013. From Judgmental Projection to Time Series Forecast: Does it Alter the Debt Sustainability Analysis of Bangladesh? *Bangladesh Development Studies*, XXXVI(3). Retrieved from https://bids.org.bd/uploads/publication/ BDS/36/36-3/1 Judgmental%20Projection.pdf.
- Government of Romania, Ministry of Finance, 2023. Report Regarding the Macroeconomic Situation in 2023 and Its Projection in 2024-2026.
- Kawai, M. and L. Maccini, 1995. Twin Deficits Versus Unpleasant Fiscal Arithmetics in a Small Open Economy. *Journal of Money, Credit and Banking*, vol. 27, No. 3.
- Navapan, K., & Boonyakunakorn, P., 2017. Forecasting the Growth of Total Debt Service Ratio with ARIMA and State Space Model. *Predictive Econometrics and Big Data, Studies in Computational Intelligence*, 753, 492-501.
- Sargent, T. and N. Wallace, 1981. Some Unpleasant Monetarist Arithmetic. *The Federal Reserve Bank of Minneapolis Quarterly Review*, pp. 1-17.
- Stoian, A., 2008. Analysing Causality Between Romania's Public Budget Expenditures and Revenues. *Theoretical and Applied Economics*, Vol.11, pp. 60-64.
 *** National Institute of Statistics, 2003. *Monthly statistical bulletin* no. 6 /2023. https://insse.ro/cms/sites/default/files/field/publicatii/buletin statistic lunar nr6 2023.pdf.

7. Annex

Date: 11/06/23 Time Sample: 2020M01 20 Included observation Autocorrelation	e: 00:57)24M12 Is: 60 Partial Correlation	AC	PAC	Q-Stat	Prob	Date: 11/06/23 Sample: 2020M Included observ Autocorrelatio
		1 0.498 2 0.358 3 0.392 4 0.232 5 0.126 6 -0.025 7 0.042 8 -0.052 9 0.036 10 0.015 11 0.059 12 0.260 13 0.067 14 0.019 15 0.202 16 -0.016 20 -0.156 21 -0.138 22 -0.133 23 -0.123 24 -0.191 25 -0.075 26 -0.030 7 -0.424	0.498 0.146 0.228 -0.076 -0.063 -0.209 0.124 -0.102 0.240 -0.101 0.177 -0.160 -0.055 -0.031 0.068 -0.072 0.019 -0.107 -0.104 -0.101 0.017 -0.104 -0.223 0.244 0.117	15.624 23.827 33.873 37.438 38.510 38.552 38.678 38.878 38.878 38.878 44.950 44.950 44.952 44.948 44.952 45.655 55.195 55.195 55.195 55.195 55.195 59.540 59.540 59.633	0.000 0.000	
1) 1	i i	28 0.015	0.012	59.860	0.000	I 🗐 I

Date: 11/06/23 Time	: 11:39					
Sample: 2020M01 20	124M12					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	i 🖿	1	0.171	0.171	1.8503	0.174
1 1	I I	2	0.051	0.022	2.0168	0.365
1 🗐 1	ı 🗖 i	3	0.187	0.180	4.2905	0.232
		4	-0.286	-0.369	9.7083	0.046
101	1 1	5	-0.119	-0.001	10.672	0.058
I I	I I	6	0.016	0.017	10.689	0.098
		7	-0.360	-0.284	19.771	0.006
		8	-0.266	-0.277	24.825	0.002
111	1 1 1	9	-0.032	0.028	24.902	0.003
1 1	ı 🗖 i	10	-0.007	0.194	24.906	0.006
1) 1	101	11	0.057	-0.106	25.156	0.009
-	ı 🗖	12	0.396	0.288	37.305	0.000
1 1 1	10	13	0.067	-0.085	37.665	0.000
111	1 1	14	0.026	-0.002	37.721	0.001
1 🗐 1		15	0.111	-0.218	38.748	0.001
1	1 🗐 1	16	-0.063	0.135	39.085	0.001
1) 1	1 🗐 1	17	0.062	0.164	39.413	0.002
1.1	10	18	-0.018	-0.156	39.443	0.002
	() () ()	19	-0.172	0.053	42.140	0.002
111	1 🗐 1	20	-0.047	0.130	42.343	0.002
1011	111	21	-0.109	-0.020	43.467	0.003
111		22	-0.036	-0.257	43.596	0.004
111	101	23	-0.049	-0.084	43.834	0.006
	 .	24	-0.198	-0.268	47.888	0.003
111	1 🗐 1	25	-0.025	0.096	47.953	0.004
1 1	()	26	0.007	-0.061	47.958	0.005
1 1	1 🗖 1	27	0.010	0.152	47.969	0.008
	1 1	28	0.125	-0.007	49.783	0.007

Correlogram for the SC2T1

Correlogram for the SC2T2

Date: 11/06/23 Tim Sample: 2020M01 2	e: 12:34 024M12						Date: 1 Sampl	1/06/23 Ti e: 2020M01	me: 13 2024N	:35 /12							D	ate: 11/06/23 Tim	e: 10:54					
Included observation Autocorrelation	IS: 60 Partial Correlation		AC	PAC	Q-Stat	Prob	Include Auto	ed observati ocorrelation	ions: 60 Pai) rtial Cor	rrelation		AC	PAC	Q-Stat	Prob	ln In	cluded observation	ns: 60 Partial Correlation		۸C	PAC	0.Stat	Proh
		1 2 3 4 5 6 7 8 9 10	0.925 0.844 0.767 0.695 0.622 0.555 0.479 0.394 0.316 0.237	0.925 -0.083 -0.015 -0.012 -0.049 -0.005 -0.101 -0.116 -0.005 -0.073	53.997 99.733 138.15 170.24 196.41 217.61 233.74 244.86 252.15 256.34	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000						1 2 3 4 5 6 7 8 9 10	0.890 0.806 0.733 0.663 0.602 0.532 0.460 0.387 0.305 0.229	0.890 0.065 0.018 -0.010 0.007 -0.069 -0.062 -0.053 -0.102 -0.049	49.986 91.670 126.70 155.90 180.42 199.93 214.76 225.49 232.28 236.17	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	1 2 3 4 5 6 7 8 9 10	0.836 0.750 0.697 0.622 0.570 0.520 0.461 0.424 0.353 0.245	0.836 0.169 0.121 -0.043 0.032 -0.003 -0.037 0.029 -0.115 -0.208	44.037 80.070 111.80 137.54 159.54 178.19 193.11 205.98 215.08 219.54	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
		11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0.161 0.087 0.079 0.070 0.061 0.053 0.045 0.038 0.030 0.019 0.009 -0.001 -0.011 -0.021 -0.050	-0.047 -0.050 0.409 -0.076 0.007 0.003 -0.027 0.007 -0.115 -0.104 0.029 -0.063 -0.015 -0.032 0.047	258.31 259.40 259.79 260.10 260.34 260.52 260.64 260.72 260.76 260.77 260.78 260.82 260.82 261.09	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000						11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0.159 0.074 0.059 0.048 0.040 0.034 0.030 0.024 0.017 0.010 0.000 0.000 0.009 0.015 0.024 0.024	-0.028 -0.133 0.261 0.067 0.041 0.015 0.033 -0.042 -0.047 -0.043 -0.091 -0.044 0.001 -0.075 -0.115	238.09 238.52 238.79 238.98 239.12 239.22 239.29 239.34 239.38 239.38 239.38 239.38 239.39 239.41 239.41	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	0.191 0.135 0.097 0.080 0.073 0.062 0.057 0.053 0.046 0.035 0.046 0.035 0.004 0.035 0.004 0.004 0.004 0.004	0.012 -0.018 0.052 0.052 0.084 0.019 0.033 0.051 0.001 -0.021 -0.059 -0.114 -0.044 -0.024 -0.153 -0.037	222.30 223.71 224.47 224.99 225.43 225.75 226.03 226.28 226.47 226.67 226.67 226.80 226.80 226.80 226.81 227.13 227.87	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Corre	logram fo	26 27 28 28	-0.083 -0.111 -0.134 he \$	-0.068 0.024 0.004 SC2	261.84 263.22 265.31 2CT3	0.000 0.000 0.000		Corr	elo	grai	m fo	26 27 28 28	-0.094 -0.117 -0.136	0.055 0.027 0.011 SC2	240.91 242.45 244.61 244.61	0.000		Correl	ogram fc	27 28	-0.115 -0.137	-0.047 0.041	229.36 231.54	0.000 0.000

"Ovidius" Ur	niversity Annals	, Economic	Sciences	Series
	N N	/olume XXI	V, Issue 1	/2024

Date: 11/06/23 Time Sample: 2020M01 20 Q-statistic probabiliti	e: 01:08)24M12 es adjusted for 2 ARN	/Aterms			
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	AC 2 -0.007 3 -0.012 4 -0.015 5 0.138 6 -0.106 7 0.123 8 -0.157 9 -0.012 10 -0.040 11 -0.007 12 0.350 13 -0.062 14 -0.018 15 -0.043 16 0.041 17 -0.036 18 -0.048 19 -0.005 20 -0.074 21 0.035 22 -0.041 23 -0.006	PAC 0.004 -0.007 -0.012 0.015 0.138 -0.109 0.131 -0.1702 -0.067 0.026 0.329 -0.023 -0.046 0.0023 -0.046 0.0023 -0.130 0.026 0.0023 -0.130 0.026 0.0023 -0.0130 0.026 0.0023 -0.0130 0.026 0.0023 -0.0130 0.026 0.0023 -0.0130 0.0202 -0.023 -0.020 -0.023 -0.023 -0.032 -0.032 -0.032 -0.046 0.002 -0.023 -0.046 0.002 -0.023 -0.046 0.002 -0.023 -0.046 0.002 -0.023 -0.046 0.002 -0.023 -0.046 0.002 -0.023 -0.046 0.002 -0.023 -0.032 -0.046 0.002 -0.023 -0.046 0.002 -0.023 -0.046 0.002 -0.053 -0.046 0.002 -0.053 -0.046 0.002 -0.053 -0.045 0.026 0.022 -0.053 -0.045 0.026 0.022 -0.055 -0.052 -0.055	Q-Stat 0.0008 0.0044 0.0295 2.1041 3.1611 4.9350 4.9447 5.0655 14.585 14.585 14.890 15.206 15.320 15.522 15.522 15.522 15.522 15.522 15.522	Prob 0.904 0.985 0.723 0.717 0.552 0.667 0.751 0.828 0.148 0.488 0.246 0.429 0.487 0.558 0.598 0.647 0.697 0.752
		24 -0.197 25 -0.005	-0.362 0.017	20.319 20.321	0.563 0.622
	1] 1 1] 1	26 0.039 27 0.012	0.060 0.040	20.491 20.507	0.669 0.720
i i i		28 0.038	0.077	20.678	0.758

Date: 11/06/23 Time Sample: 2020M01 2 Q-statistic probabiliti	e: 12:06 024M12 es adjusted for 2 ARM	v/A te	rms			
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	1 1 🖬 1	1	0.138	0.138	1.1928	
1 1		2	0.036	0.017	1.2750	
1 1 1 1		3	0.142	0.137	2.5919	0.107
	i 🖬 🗉	4	-0.226	-0.274	5.9778	0.050
1 1 10 1		5	0.071	0.158	6.3171	0.097
1 1 10 1	1 1 1	6	0.102	0.052	7.0389	0.134
	1 1	7	0.006	0.061	7.0411	0.218
		8	-0.158	-0.313	8.8200	0.184
1 1011	1 1	9	-0.095	0.034	9.4734	0.220
iĝi		10	0.025	0.084	9.5209	0.300
1 1011		11	-0.081	-0.021	10.020	0.349
i == i		12	0.171	0.073	12.292	0.266
1 1 1 1		13	0.050	-0.014	12.492	0.328
1 11		14	-0.028	0.088	12.556	0.402
		15	-0.019	-0.139	12.587	0.480
1 1 1	()	16	-0.101	-0.037	13.457	0.491
1 11		17	-0.026	-0.057	13.517	0.562
1 1011		18	-0.088	-0.040	14.196	0.584
		19	-0.102	-0.158	15.149	0.585
		20	-0.003	0.092	15.150	0.652
iĝi		21	-0.082	-0.022	15.796	0.671
ן ולי		22	-0.051	-0.042	16.053	0.713
ן ומי	ו 🖬 י	23	-0.059	-0.132	16.406	0.746
		24	-0.212	-0.211	21.035	0.519
1 11		25	-0.030	0.089	21.130	0.573
	ן ון י	26	0.001	-0.062	21.130	0.631
		27	0.001	0.034	21.130	0.685
ի մին է	ן ום י	28	0.056	-0.067	21.491	0.716

Residual correlogram selected model for the SC2T1

Residual correlogram selected model for the SC2T2

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro
101	1.00	1	0.042	0.042	0.1134	
i di c	1 11	2	0.063	0.062	0.3718	0.5
11	111	3	0.018	0.012	0.3919	0.8
- 1 1 1	1.10	4	0.054	0.049	0.5852	0.9
11	1 1	5	0.000	-0.006	0.5853	0.9
11	i)i	6	0.022	0.015	0.6172	0.9
- 1 D	ի մին։	7	0.083	0.081	1.0999	0.9
- 1 1 1	i)i	8	0.033	0.022	1.1761	0.9
- 1 1 1	i]ii -	9	0.040	0.029	1.2943	0.9
- i≬i -	ի մին է	10	0.063	0.054	1.5883	0.9
- 11	itti	11	-0.039	-0.057	1.7040	0.9
- I		12	-0.160	-0.170	3.6997	0.9
- 1	1 1 1	13	-0.016	-0.007	3.7195	0.9
- i∎i -	i] i	14	0.050	0.062	3.9222	0.9
- () (1 11	15	0.030	0.034	3.9975	0.9
11	1 1	16	0.006	0.007	4.0008	0.9
- () (111	17	0.028	0.013	4.0678	0.9
- (1)	111	18	-0.041	-0.045	4.2185	0.9
- (1)	1 1	19	-0.027	-0.007	4.2853	1.0
- () (ի մին	20	0.057	0.077	4.5900	1.0
- 1 1	111	21	0.006	0.015	4.5940	1.0
- 1 1 1	1 1	22	0.034	0.043	4.7061	1.0
- 1 (L		23	-0.026	-0.054	4.7745	1.0
- P		24	0.076	0.025	5.3746	1.0
		25	-0.001	0.000	5.3748	1.0
- 1		26	-0.018	-0.005	5.4105	1.0
- 10		27	-0.028	-0.021	5.4964	1.0
111	1 I I	28	0.005	0.006	5.4998	1.0

Residual correlogram selected model for the SC2T3

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro
i bi	l do	1	0.055	0.055	0.1930	
i İn	i din -	2	0.064	0.062	0.4595	0.4
i İn	i do -	İ3	0.069	0.063	0.7742	0.6
1.1	i di	4	-0.047	-0.058	0.9208	0.8
	i do -	İ 5	0.020	0.017	0.9469	0.9
1.1		İ 6	0.035	0.036	1.0329	0.9
11	i da -	7	-0.004	-0.003	1.0338	0.9
t in the second s	ի դիր է	İ 8	0.097	0.089	1.7085	0.9
10	i di	j9	0.073	0.063	2.1005	0.9
т İт —	i do -	İ 10	0.043	0.029	2.2373	0.9
i 🔟	i in	İ 11	0.173	0.152	4.5122	0.9
	ட் ம்	12	-0.152	-0.179	6.2969	0.8
i 🖬 👘	i ibi	İ 13	0.111	0.121	7.2703	0.8
πĒ.	l di	14	0.048	0.028	7.4556	0.8
11		15	0.022	0.040	7.4945	0.9
1.1	i di	İ 16	-0.015	-0.070	7.5131	0.9
1.1	i do -	İ 17	-0.032	-0.043	7.6021	0.9
1 1		İ 18	-0.004	0.007	7.6033	0.9
1 1	i do -	İ 19	-0.003	-0.036	7.6040	0.9
	1 11	20	0.008	0.016	7.6098	0.9
11	1 11	21	0.032	0.022	7.7049	0.9
- i li -	i do -	İ 22	0.007	-0.032	7.7092	0.9
1.1	1 11	23	-0.024	0.013	7.7691	0.9
i li	l di	24	0.020	-0.053	7.8097	0.9
i li i	1 11	İ 25	-0.060	-0.017	8.1980	0.9
11	1 11	26	0.019	0.026	8.2373	0.9
1 1	1 11	27	0.001	0.023	8.2373	1.0
i di c	i di	İ 28	-0.075	-0.091	8.8857	1.0

Residual correlogram selected
model for the SC2T4

Date: 11106/23 Time: 11:02 Sample: 2020M01 2024M12 Q-statistic probabilities adjusted for 1 ARMA term										
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob				
. Ita	in	1	-0.038	-0.038	0.0917					
, di i	111	2	-0.073	-0.075	0.4354	0.509				
i 🖬 i	10	3	0.153	0.148	1.9656	0.374				
u li i	101	4	-0.071	-0.068	2.3006	0.512				
111	1.1	5	-0.049	-0.032	2.4630	0.651				
i 🛛 i	1 1	6	0.041	0.007	2.5791	0.765				
1 🖬 I	10 I	7	-0.126	-0.114	3.6966	0.718				
101	1 🗊 1	8	0.095	0.105	4.3439	0.739				
		9	0.258	0.246	9.1982	0.326				
L L L	1 1	10	-0.079	-0.021	9.6585	0.379				
i 🕅 i	11	11	0.049	0.040	9.8408	0.455				
i 🛙 i	11	12	0.097	0.027	10.570	0.480				
i 🕅 i	i 🗊 i	13	0.071	0.145	10.966	0.532				
	1.1	14	-0.014	-0.009	10.983	0.612				
11	10	15	0.019	0.034	11.011	0.685				
L L	1 1	16	-0.024	0.003	11.061	0.748				
11	10	17	-0.027	-0.074	11.123	0.802				
1 I.	10	18	-0.005	-0.056	11.125	0.850				
11	111	19	-0.048	-0.029	11.338	0.879				
1 1	1.1	20	-0.003	-0.015	11.339	0.912				
i Di i	11	21	0.068	0.014	11.780	0.923				
1.1.1	1.1	22	0.017	-0.029	11.809	0.945				
L L	1 1	23	-0.010	-0.005	11.820	0.961				
i 🛙 i	i 🗖 i	24	-0.095	-0.170	12.760	0.957				
i 🕅 i	i 🏚	25	0.045	0.048	12.979	0.966				
i 🕮 i	i 🗐 i	26	0.110	0.139	14.303	0.956				
i 🗐 i i	10	27	-0.100	-0.051	15.440	0.949				
i 🛙 i	1 🗐 I	28	-0.091	-0.104	16.407	0.945				

Residual correlogram selected model for the SC2T5

chosen for SC2T4

model chosen for SC2T5